近年來,大到金融、公共交通和社會保障,小到圖書館、校園和門禁等,智能卡的應(yīng)用領(lǐng)域日益多元化,相關(guān)的智能卡設(shè)計、生產(chǎn)企業(yè)越來越多。由于智能卡被完全密封,對其整體電氣參數(shù)L、C、R的測量造成了困難,而諧振頻率作為能夠反映智能卡天線端口部分電氣參數(shù)的重要指標(biāo),被各企業(yè)及研發(fā)單位廣泛用于設(shè)計或生產(chǎn)參考,長期以來被大量使用。但到目前為止,對于諧振頻率的測量方法,業(yè)界尚無統(tǒng)一標(biāo)準(zhǔn)。同時各環(huán)節(jié)在提及諧振頻率值的時候,往往忽略其測量方法以及明確的誤差范圍,因此在智能卡測量領(lǐng)域,諧振頻率這一參數(shù)的真實性和可靠性長期被忽視。
以符合ISO/IEC14443標(biāo)準(zhǔn)的智能卡為例,協(xié)議規(guī)定了通信用載波頻率為13.56MHz,但對智能卡本身的諧振頻率未規(guī)定標(biāo)準(zhǔn)值,因此,客觀上造成了目前流通的智能卡諧振頻率的多樣性。目前,按照智能卡的形態(tài),業(yè)界常用的智能卡諧振頻率的測量方法主要有兩種:
1:LCR電橋或阻抗分析儀測量;(測量出L、C值,然后利用公式計算諧振頻率)
2:頻譜分析儀或網(wǎng)絡(luò)分析儀測量。(測量密封智能卡的諧振頻率)
首先介紹一下如何測量各部分的電氣參數(shù),然后利用公式計算諧振頻率。智能卡在物理結(jié)構(gòu)上,主要由三部分組成,1:IC芯片,2:耦合天線,3:封裝材料,如圖1所示,其中封裝材料通常為絕緣材質(zhì),不引入電氣參數(shù),故本文不做深入分析。
智能卡的諧振頻率fres公式如下: ,可見,fres取決于等效電路中的電感值和電容值。
從圖1中的虛線La/Lb從左往右看,為IC芯片端口部分與諧振頻率相關(guān)的電氣參數(shù),Rab為IC芯片端口電阻值的總和,Cic為IC芯片端口電容值的總和,Cmount其含義為IC芯片封裝成模塊時引入的電容值,如芯片不需要進(jìn)行模塊封裝,則可忽略Cmount。從圖1中的虛線La/Lb從右往左看,為耦合天線部分與諧振頻率相關(guān)的電氣參數(shù),Lcoil為耦合天線的電感值,Rcoil為耦合天線的電阻值,Ccoil為耦合天線的電容值,Cpack其含義為耦合天線在制卡過程中引入的封裝電容值,其值與制卡過程中多種因素相關(guān),視具體情況而定。
依據(jù)圖1的等效電路結(jié)構(gòu),我們將智能卡fres的計算公式擴(kuò)充如下:
當(dāng)我們有了詳細(xì)的計算公式,是否就可以計算出準(zhǔn)確的fres呢?實際情況并非如此。接下來,我們介紹各L、C參數(shù)的測量方法,以及誤差來源。目前在IC芯片較為常見的模塊封裝形式有XOA2和COB兩種,而且由于Cmount會受到各模塊加工廠的技術(shù)水平、用料以及靜電防護(hù)等綜合因素的影響,所以各模塊加工廠出產(chǎn)的模塊其Cmount存在差異,且無法給出準(zhǔn)確值,至此,用智能卡的fres計算公式引入了第一個參數(shù)誤差;同時在智能卡的制卡環(huán)節(jié),由于Cpack會受到各制卡廠的技術(shù)水平、用料以及加靜電防護(hù)等綜合因素的影響,所以各值卡廠出產(chǎn)的卡片其Cpack也存在差異,且無法給出準(zhǔn)確值,由此引入了第二個參數(shù)誤差。在實際計算中,上述兩個參數(shù)通常采用經(jīng)驗值,由此計算得到的fres就會存在誤差。因此要求我們在使用fres的時候,需明確其誤差范圍。特別要強(qiáng)調(diào)的是,對于不同的條件下加工得到的智能卡,上述兩個參數(shù)的經(jīng)驗值是不可以通用的。
下文將以Agilent 4285A(LCR Meter)配合測量夾具Agilent 16047E,對等效電路中的Cic、Lcoil和Ccoil進(jìn)行測量。整體測量平臺如圖2所示。
圖2 Agilent 4285A(LCR Meter)和測量夾具Agilent 16047E
|
由于耦合天線和IC芯片的寄生參數(shù)都會給測量結(jié)果帶來誤差,所以選擇合適的等效電路模型,可以有效降低寄生參數(shù)的影響。通常Lcoil為小電感,串聯(lián)寄生電阻Rs的影響明顯,因此在測量Lcoil時,采用Ls~Rs 模型;而Cic較大,并聯(lián)寄生電容Rp的影響明顯, 因此在測量Cic時,采用Cp~Rp模型。
上述測量條件確定后,按照儀器的使用步驟,開機(jī)預(yù)熱和校準(zhǔn)后,我們采用下述方法測量得到Lcoil和30 MHz下的耦合天線的電感值Lm,然后通過Lcoil和Lm計算出Ccoil。
1:選擇測量模型:Ls~Rs。
2:設(shè)置測量電壓:1Vrms。
3:設(shè)置測量頻率:1MHz。
4:紀(jì)錄測量結(jié)果Ls,此即為Lcoil。
5:設(shè)置測量頻率:fm=30MHz。
6:紀(jì)錄測量結(jié)果Ls,此即為Lm,通過如下公式計算出耦合天線的Ccoil。
我們對如圖3所示帶有模塊底座的耦合天線樣本進(jìn)行了測量,為了說明模塊底座對測量結(jié)果的影響,我們分別測量耦合天線帶有模塊底座與去除模塊底座后的Lcoil和Ccoil。如表1所示。(表中數(shù)據(jù)均為測量了10次以后的平均值,有效位數(shù)保留到小數(shù)點后2位,下同),比較表1的數(shù)據(jù),可以發(fā)現(xiàn),該模塊底座的存在,對該耦合天線樣本的Lcoil無影響, 但會使Ccoil增加0.16pf。
圖3 帶有模塊底座的耦合天線樣本
|
表1 耦合天線的電感值和電容值
樣本狀態(tài) |
Lcoil/uh |
Lm/uh |
Rcoil/ohm |
Ccoil/pf |
耦合天線+ 模塊底座 |
5.30 |
22.92 |
9.16 |
4.08 |
耦合天線 |
5.32 |
20.45 |
8.70 |
3.92 |
差值 |
-0.02 |
2.47 |
0.47 |
0.16 |
接下來,我們討論如何測量IC芯片的端口電容Cic,樣本如圖4所示,選用的芯片為NXP S50,左邊為模塊底座(同圖3中的底座模塊),右邊為完成完成模塊封裝(XOA2)后的樣本外觀,所以下文中得到的電容值構(gòu)成為“Cic+ Cmount(Cmount中包含了C模塊底座)”。
電容測量方法:
2)然后設(shè)定起始頻率和截止頻率,
電容測量方法:
1:選擇測量模型Cp~Rp。
2:設(shè)置測量頻率:13.56MHz。
3:設(shè)置測量電壓:0.5Vrms。
4:記錄測量結(jié)果Cp:即Cic+Cmount。
5:增加測量電壓以0.5Vrms為一個步進(jìn),重復(fù)3~4步驟。
6:直至測量電壓大于YVrms。
其中Y定義為:IC芯片正常工作時所需要的電壓值。Y的值視具體的IC芯片而定,其此處Y=2。如果IC芯片未進(jìn)行模塊封裝,也可以直接對Cic進(jìn)行測量。
圖4 模塊底座和NXP S50模塊(XOA2)
|
表2 IC芯片在不同頻率和電壓條件下的端口電容
測量頻率 |
0.5Vrms |
1Vrms |
1.5Vrms |
2Vrms |
11M |
14.43 |
14.88 |
15.45 |
15.58 |
12M |
14.42 |
14.86 |
15.43 |
15.56 |
13.56M |
14.39 |
14.84 |
15.40 |
15.54 |
15M |
14.37 |
14.82 |
15.37 |
15.51 |
16M |
14.36 |
14.80 |
15.34 |
15.50 |
17M |
14.35 |
14.79 |
15.31 |
15.49 |
由表2可見,測量頻率對于Cic+ Cmount之和的影響很小,但不同的測量電壓,對于Cic+ Cmount之和的影響很大,主要是因為Cic是各部分電容的總和,當(dāng)測量電壓從小到大增加時,Cic隨著IC芯片內(nèi)部電路的逐漸開啟而減小,當(dāng)測量電壓增加到IC芯片電路能夠正常工作時,Cic將維持穩(wěn)定。因此,以測量頻率13.56MHz為例,測量電壓從0.5Vrms增加至2Vrms的過程中,IC芯片的會處于3 種狀態(tài),第一,IC芯片完全不工作(0.5Vrms),第二,IC芯片端口電路部分開啟(1~1.5Vrms),第三,IC芯片端口電路全部開啟(2Vrms)。
不同的測量電壓條件,反映到諧振頻率中又是如何?我們還需要對特定環(huán)境下加工的Cmount和Cpack給出經(jīng)驗值,由于本文在IC芯片電容的測量結(jié)果中已經(jīng)包含了Cmount,所以此處僅需給出Cpack,其經(jīng)驗值為1.5pf,然后分別將13.56MHz頻率下,將各電容值和電感值帶入公式進(jìn)行計算,可得到表3。
表3 智能卡的諧振頻率
測量電壓/Vrms |
Ccoil/pf |
Cic+Cmount |
Cpack/pf |
Lcoil/uh |
fres/MHz |
0.5 |
3.92 |
14.39 |
1.5 |
5.32 |
15.11 |
1.0 |
3.92 |
14.84 |
1.5 |
5.32 |
14.77 |
1.5 |
3.92 |
15.4 |
1.5 |
5.32 |
14.38 |
2.0 |
3.92 |
15.54 |
1.5 |
5.32 |
14.28 |
可見從0.5Vrms至2.0Vrms,fres出現(xiàn)了約0.83 MHz的波動,考慮到計算參數(shù)還中包含了經(jīng)驗值Cpack,一方面經(jīng)驗值的估算是否準(zhǔn)確尚存疑問;另一方面測量值Ccoil、Lcoil和Cic+Cmount,目前業(yè)界尚無統(tǒng)一的測量方法,不同測量條件下,得到的結(jié)果相去甚遠(yuǎn);更有甚者,在fres的計算中直接忽略了Cmount和Cpack兩個參數(shù)。因此,同樣是采用計算公式,面對相同的樣本,大家得到的fres很難達(dá)到統(tǒng)一,那么我們在使用fres進(jìn)行設(shè)計、驗證、生產(chǎn)時不得不小心謹(jǐn)慎,避免由于計算結(jié)果的不準(zhǔn)確產(chǎn)生對產(chǎn)品特性的誤判。
其次,當(dāng)我們的測量樣本為密封狀態(tài)的智能卡時,目前業(yè)界主要采用如下三種測量方法進(jìn)行智能卡諧振頻率的測量:
1:帶跟蹤信號發(fā)生器(RF輸出)功能的頻譜分析儀。
2:不帶跟蹤信號發(fā)生器的頻譜儀(成本較低),配合信號發(fā)生器(相當(dāng)于頻譜分析儀的跟蹤信號發(fā)生器)。
3:矢量網(wǎng)絡(luò)分析儀測量。
上述三種測量儀器,原理基本相同,即在某個頻率區(qū)間內(nèi)以額定的功率發(fā)射信號,無諧振時,在測量儀器的屏幕上顯示的功率曲線為一條直線,當(dāng)某個頻率恰好與待測智能卡的fres相吻合時,測量系統(tǒng)就會產(chǎn)生諧振,使得輸入端檢測到的功率值達(dá)到最大,此時觀察測量儀器的屏幕會出現(xiàn)一個波峰或者波谷,該波峰或者波谷對應(yīng)的頻率值即被稱為智能卡的fres。下文中會以頻譜分析儀HP8591E為例。
具體測量方法如下:
1)在HP8591E的輸出端和輸入端各接一個線圈(天線),將兩只線圈以水平方式上下疊加,制做成固定的測量夾具(如圖5所示,圖中智能卡樣本為上海公交卡)。
圖5 HP8591E的測量環(huán)境
|
3)設(shè)定發(fā)射功率,RF端有功率輸出;
4)然后將待測智能卡放置在夾具上方。(智能卡與天線的間距小于1cm)
5)按PK SEARCH鍵,頻譜儀界面就會將MARKER點標(biāo)記到頻譜中功率的最高點,如圖6所示。此波峰點對應(yīng)的頻率即為智能卡的fres。
圖6 HP8591E測試得到的非接觸式智能IC卡的fres
|
在了解了測量方法后,我們選取了部分目前上海市場中較常見的智能卡作為測量樣本,如圖7所示(包括上海市民卡1張、上海公交卡2張、上海地鐵單程票2張、世博海寶交通卡1張、杉德萬通卡1張和華虹餐廳就餐卡1張)。
圖7常見的非接觸式IC卡
|
在測量前,我們需要設(shè)定發(fā)射天線的功率值,為保證測量到的fres能夠真實反映各種智能卡的電氣特性,我們設(shè)置的起始頻率和截止頻率范圍是10 MHz 至20MHz,設(shè)置的發(fā)射天線功率值通常在10dbm以下,或者是控制輸出電流小于等于20mA。在上述測量條件確定以后,我們得到了每張智能卡的fres。
表4 智能卡的諧振頻率
樣本種類 |
fres/MHz |
樣本種類 |
fres/MHz |
上海公交卡 1 |
15.80 |
上海市民卡 |
19.25 |
上海公交卡2 |
16.80 |
上海地鐵單程票1 |
17.55 |
杉德萬通卡 |
17.10 |
上海地鐵單程票2 |
18.45 |
世博海寶交通卡 |
14.00 |
華虹餐廳就餐卡 |
14.65 |
表4中諧振頻率的測量結(jié)果,驗證了前文中提到的,目前流通的智能卡諧振頻率的多樣性。但本文強(qiáng)調(diào)的重點在于,我們采用上述方法,測量fres得到了表4中的結(jié)果,那么同樣的樣本,不同的測量儀器,諧振頻率的測量結(jié)果會相同嗎?對此,我們以上海公交卡為樣本,在如圖8所示的測量儀器及配套的測量夾具上進(jìn)行了測量,測量原理同前,讀取儀器屏幕中波峰值對應(yīng)的頻率點即為智能卡的fres(如表5所示)。但因為目前業(yè)界對測量夾具中天線的線徑、匝數(shù)、面積、間距、材料和相對位置等參數(shù)尚無統(tǒng)一的規(guī)格標(biāo)準(zhǔn),因此使用圖8中的測量夾具時,智能卡需要放置于兩個天線之間。我們稱該測量儀器稱為:方法4
圖8 方法4的測量環(huán)境
|
表5 方法1與方法4的測量結(jié)果比較
測量方法 |
樣本種類 |
fres/MHz |
樣本種類 |
fres/MHz |
方法1 |
上海公交卡 1 |
15.80 |
上海公交卡2 |
16.80 |
方法4 |
上海公交卡 1 |
17.83 |
上海公交卡2 |
18.3 |
差值/MHz |
/ |
2.02 |
/ |
1.7 |
通過對表5的測量數(shù)據(jù)的分析,不難發(fā)現(xiàn),對于上海公交卡1,使用方法1和方法4測量到的fres差值達(dá)到了2.02 MHz,波動比例分別達(dá)到12%和11%,,而對于上海公交卡2,fres差值達(dá)到了1.7 MHz,波動比例分別達(dá)到10%和9%。至此,回答了前文中提出的疑問,同樣的智能卡在不同的測量方法下,fres測量結(jié)果相差極大,面對這樣的測量結(jié)果,顯然缺乏進(jìn)行比較的基礎(chǔ)。此時,即使我們加入了測量方法的描述,但是由于測量儀器的不同,測量夾具不規(guī)范,很顯然,單純的討論fres是沒有意義的。
那么同樣的樣本,采用同樣的測量儀器,但是不同的測量方法,fres的測量結(jié)果會相同嗎?我們?nèi)砸陨虾9豢闃颖?,采用方法一及其配套測量夾具,僅改變測量方法中的第4點,即待測智能卡與測量夾具的間距,然后測量fres。如表6所示,以樣本與測量夾具的間距作為變量,隨著樣本遠(yuǎn)離測量夾具,得到的fres呈現(xiàn)單調(diào)下降趨勢。盡管在表6中fres從0mm至20mm僅降低了0.35 MHz,該差值的絕對值并不算大,但是亟待確認(rèn)的是,在什么樣的測量間距下,得到的fres才最接近真實值?另外,測量環(huán)境的射頻噪聲對fres的影響也不容忽視,如果測量環(huán)境附近有高頻信號發(fā)射裝置,或者有大的金屬物體,都會對測量結(jié)果造成影響,作為實驗室測量環(huán)境應(yīng)該避免射頻噪聲的影響,本文對此不再展開。
表6智能卡與測量夾具的間距與諧振頻率的關(guān)系
上海公交卡1與測量夾具的間距 /mm |
fres/MHz |
上海公交卡2與測量夾具的間距 /mm |
fres/MHz |
0 |
15.80 |
0 |
16.80 |
10 |
15.7 |
10 |
16.65 |
15 |
15.6 |
15 |
16.55 |
20 |
15.5 |
20 |
16.45 |
綜上所述,諧振頻率作為智能卡重要的特征參數(shù),因為測量方便,操作簡單,而且能夠為產(chǎn)品設(shè)計、驗證與質(zhì)量控制等方面提供較多的參考信息,因而在業(yè)界越來越受到重視,隨著各企業(yè)和單位對諧振頻率檢測能力的提高,fres逐漸被寫進(jìn)設(shè)計、檢驗規(guī)范中,但由于沒有統(tǒng)一的測量標(biāo)準(zhǔn),客觀上造成了測量結(jié)果的差異,同樣的智能卡,不同企業(yè)和單位給出的諧振頻率測量結(jié)果往往大項徑庭,而且其測量結(jié)果的誤差范圍未知。如果各單位均按照自己的理解建立一套檢測規(guī)范和驗收標(biāo)準(zhǔn),不但增加了生產(chǎn)成本,而且在對外溝通中無法有效輸出,反而會使得業(yè)界對于智能卡諧振頻率值的定義更加混亂。在華虹設(shè)計對于智能卡的諧振頻率測量中,我們深刻的體會到,剝離測量條件、方法去討論諧振頻率的值是不科學(xué)的。所以我們僅把諧振頻率這一測量結(jié)果作為公司內(nèi)部設(shè)計的參考標(biāo)準(zhǔn),以及量產(chǎn)階段產(chǎn)品一致性的考核指標(biāo),不作為對外輸出和業(yè)界交流的標(biāo)桿。因此,我們建議并期待相關(guān)標(biāo)準(zhǔn)化部門或行業(yè)協(xié)會能夠盡快制定出諧振頻率的相關(guān)測量標(biāo)準(zhǔn),將測量方法和測量條件加以統(tǒng)一,使諧振頻率這一重要參數(shù)成為業(yè)界認(rèn)可的技術(shù)標(biāo)準(zhǔn),可以參與嚴(yán)謹(jǐn)?shù)膶W(xué)術(shù)討論,能夠在智能卡領(lǐng)域發(fā)揮重要作用,推進(jìn)智能卡行業(yè)的發(fā)展及應(yīng)用。